
Xenon Documentation
Release 0.9.0

Michele Lacchia

Jun 18, 2023

Contents

1 Installation 3

2 Usage 5
2.1 The command line . 5
2.2 An actual example . 5

3 Other resources 7

i

ii

Xenon Documentation, Release 0.9.0

Xenon is a monitoring tool based on Radon. It monitors your code’s complexity. Ideally, Xenon is run every time you
commit code. Through command line options, you can set various thresholds for the complexity of your code. It will
fail (i.e. it will exit with a non-zero exit code) when any of these requirements is not met.

Contents 1

https://travis-ci.org/rubik/xenon
https://coveralls.io/r/rubik/xenon?branch=master
https://github.com/rubik/radon/

Xenon Documentation, Release 0.9.0

2 Contents

CHAPTER 1

Installation

With Pip:

$ pip install xenon

Or download the source and run the setup file (requires setuptools):

$ python setup.py install

3

Xenon Documentation, Release 0.9.0

4 Chapter 1. Installation

CHAPTER 2

Usage

Typically you would use Xenon in two scenarios:

1. As a git commit hook: to make sure that your code never exceeds some complexity values.

2. On a continuous integration server: as a part of your build, to keep under control, as above, your code’s
complexity. See Xenon’s .travis.yml file for an example usage.

2.1 The command line

Everything boils down to Xenon’s command line usage. To control which files are analyzed, you use the options
-e, --exclude and -i, --ignore. Both accept a comma-separated list of glob patterns. The value usually
needs quoting at the command line, to prevent the shell from expanding the pattern (in case there is only one). Every
filename is matched against the exclude patterns. Every directory name is matched against the ignore patterns. If any
of the patterns matches, Xenon won’t even descend into them.

The actual threshold values are defined through these options:

• -a, --max-average: Threshold for the average complexity (across all the codebase).

• -m, --max-modules: Threshold for modules complexity.

• -b, --max-absolute: Absolute threshold for block complexity.

All of these options are inclusive.

2.2 An actual example

$ xenon --max-absolute B --max-modules A --max-average A

or, more succinctly:

5

https://github.com/rubik/xenon/blob/master/.travis.yml

Xenon Documentation, Release 0.9.0

$ xenon -b B -m A -a A

With these options Xenon will exit with a non-zero exit code if any of the following conditions is met:

• At least one block has a rank higher than B (i.e. C, D, E or F).

• At least one module has a rank higher than A.

• The average complexity (among all of the analyzed blocks) is ranked with B or higher.

6 Chapter 2. Usage

CHAPTER 3

Other resources

For more information regarding cyclomatic complexity and static analysis in Python, please refer to Radon’s docu-
mentation, the project on which Xenon is based on:

• More on cyclomatic complexity: http://radon.readthedocs.org/en/latest/intro.html

• More on Radon’s ranking: http://radon.readthedocs.org/en/latest/commandline.html#the-cc-command

7

http://radon.readthedocs.org/en/latest/intro.html
http://radon.readthedocs.org/en/latest/commandline.html#the-cc-command

	Installation
	Usage
	The command line
	An actual example

	Other resources

